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1. STATISTICAL SHAPE ANALYSIS (SSA)

Shape of an object: all information of the object that is invariant with respect to similarity transformations on Euclidean space
(rotations, translations and dilations). Data is a 2D or 3D cloud point.

SHAPE ANALYSIS OF MANUFACTURED PARTS

An object is described by a k x m configuration matrix X (m = 2 or 3, k could be very large) .
e Assumed model in SSA: n measured objects X; = B;(p + E;)T; + 1y, vec(E) ~ N(0,X)

e Generalized Procrustes Analysis (GPA): a method for estimating the mean shape p from a sample of n objects that may
have different scales, orientations and locations.
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ANALYSIS OF EXPERIMENTS WITH SHAPE RESPONSES: Two-wAY ANOVA FOR SHAPES.

e Two factor experiment. Model for observed objects has:  E[X ;] = p+Ti+3; Hlrdhn d=hsuei=bLugbl= Liasm
Define d%(X,X2) = G(X1,X2) (procrustes distance: a metric in the non-euclidean shape space manifold). Note:
MANOVA cannot be used since usually k-m > a-b(n — 1)

o Test H{E” e ape == ok HEEE} : B; = 0 and HE,H} : (#08); = O SStotat = 884 + 558 + SSap + SServor
where SSiotat = Ty Ti) Tie1 05 ( X7 Xees), 584 = 0 d3(Kiee, Xoae), 588 = anT)_, db(Xeje, Xoee), §548 =

ifl?

HELl E?zl d.f"{ffjl = {Xill = -X-l'l-} == (-xlj- == -Xlllj: X-tt]-. '-:-:S-r_'rr-r.rr - Z?z[ E?zl Z:r,_.l d.f{-xr;f'--x*jl]
® F[E” = MS 4/MS;;rer, etc.; distribution results hold under isotropic variance if the variance is small (shapes are “close”).

e Normal isotropic assumption probably unrealistic; use two-way Permutation ANOVA for Shapes (Del Castillo and
Colosimo, 2011). More powerful than other tests for shape effect detection. Multiple comparisons based on the procrustes
metric derived.
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e Usual effect estimators are pre-shapes (i.e., normalized), small differences hard to visualize: T; = Xise = fﬂhﬁ. -
fljl = f-..--, {T'IBJ:J — f.jj. — fﬁ.. — fljl -4 f'-.

e Use vector field ("quiver”) plots relating the effects to the mean shape i = X oee (simulated responses)
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Figure 1. Main effect on the shape for factor A (left) and B (right).

2. GAUSSIAN PROCESS (GP) MODELING

Let {Y(x): * € D} be a stochastic process where D is a fixed subset of r-dimensional Euclidean space. If every finite vector
{Y(x,),Y(22),.... Y () for n = 1 has a multivariate normal distribution, the process is said to be a Gaussian Process.

GEODESIC GP’s FOR RECONSTRUCTING FREE-FORM MANUFACTURED PARTS

e Consider measurement of a free form surface. Dataset is a 3D unstructured cloud point ((z,y, z) data). Reconstruct the
true surface for: Inspection, “Reverse engineering” or Statistical Process Control. Tasks easier if a model of the
true surface available.

e Usual approach: model is z(x, y) = unclear why z is the “response” and (z,y) the “locations”. Assumes variables
correlated as a function of the euclidean distance between their locations in the XY plane. BUT: the (,y, z) data are on
a 2D manifold, not on any plane.
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e Typical form of a CAD model: patches of parametric surfaces (e.g., IGES standard) drawn using Non-Uniform Rational
B-Splines (NURBS). A NURBS surface is a function p : D C E? — § C E? of the form p(u,v) = (z(u,v), y(u,v), z(u,v))’
where (u,v) € D are surface coordinates (or ‘parameters’).

e NURBS very useful for drawing surfaces using CAD software, not so nice for fitting them from noisy data.

e A parameterized surface patch can be decomposed in its euclidean coordinate functions x(u, v), y(u, v), and z(u,v):

GGP model: use a GP for each coordinate surface (parametric surface, compatible with CAD). Correlation between points
assumed over geodesic distances on the non-euclidean surface. Requires an “as-isometric-as-possible” parameterization, i.e., a
mapping p: D) C E? — § C E? that preserves (geodesic) distances. Parametrization problem studied in computer graphics.
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True underlying surface S can be observed only with error: m(w) = (my(w), my,(w), m.(w)) = p(w) + e(w), w=(u,v)eD
where e(w) ~ N(0, 2.). Given a parametrization, true surface modeled with a smooth spatial GP (the “state” equation):

p(w) = (@(u,v), y(u,v), 2(u,v)) = (B, F . (w), B, F,(w), B, F.(w)) + 6(w), w=(u,v)€D

where d(w) is a zero-mean, smooth (no-nugget), 3-dimensional vector stationary Gaussian Process with covariance functions
cx(h), cy(h), and c.(h), respectively, where h = w; — w; Predictions are:

Pa(un, v0) = Fluo,v0) By + ¢ B3 (Mo — Fu3,), ={z,y,2}

Note: ¢,, does not contain the nuggets; we predict (reconstruct) p(ug, vg) not the observed m(ug, vg).
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GEODESIC GAUSSIAN PROCESS FOR FREE-FORM SURFACE RECONSTRUCTION (CDNT.)

Manifold learning and computer graphics algorithms tested for finding a (u, v) parametrization. Ideal parametrization: an
isometry (p = 1). GGP prediction errors improved one of order of magnitude over euclidean GP due to better modeling of

curved features.
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3. CONFIDENCE REGIONS OF RESPONSE SURFACE OPTIMA FOR PRODUCT FORMULATION

We wish to find a confidence region (CR) for the function:

h(x;B) = argmax f(x,B3), xeR¥, [BeR™ (1)

where f(x,3) is either a parametric regression model in X or a nonparametric Thin Plate Spline model in x fitted from a sample
of noisy observations y = f(x,3) + £. The solution x* is only a point estimate on the true optimum.
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Motivation. The shape and location of the CR provides alternative optimal formulation settings. Spline models are widely used
in engineering in science to locate best regions of operation of a process, but no methodology exists for obtaining a CR on x*. Such
a CR answers the therapeutic synergism problem found in the pharmaceutical industry, and, by extension, complicated prod-
uct formulation problems (chemical and food industries). How to compute a CR? Particular interest is in non-normal datasets.

“CS" (confidence set) method for finding confidence regions of functions of parameters.- The method is based on the following
steps:

1 obtain a 100(1 — )% CR for @ from the asymptotic distribution of /3.
2 For each O3 € GR‘? evaluate h(3).

— ¥ ¥

3 Let ERJE{’B} ={r € ]E’!‘|T = h(B) for all B € CR‘FI_H}

1 —cx

To estimate this confidence region, we propose bootstrapping in steps 1 and 3:

-

lgp Obtain an estimate of the 100(1 — «)% CR for B by bootstrapping B instances of 3. These instances make

G
2p For each B¢ Eﬁ?_m, evaluate h(3).

B

1—ox

e | ——
3p Let CR;{_@ = {r € R¥|7 = h(B) for all B e CR

DATA DEPTH BOOTSTRAPPING CR METHODS

In nonparametric models the number of parameters (3 is by definition infinite. In the case of Splines, however, even though the
model fitting is an optimization over an infinite-dimensional Hilbert space H:

g iy l = . 4y 2 2
f = argmin E;{ya f(xi))* + Al[PE]]

fEH 7

(where A > 0 trade-offs smmoothness vs. MSE) the remarkable Kimeldorf- Wahba theorem indicates that the solution f is given by
a finite dimensional operation that depends on a finite number of parameters 3:

P n
f = Z di.'¢t?[xj o g Z E{E[I}
=1

-

so let 3 = (d,¢') in the bootstrapping algorithm. This may result in high dimensional vectors of parameters. Need methods to
construct high dimensional confidence regions for the parameters of a linear model.

We use a data depth measure of the centrality of a point with respect to the rest of the data. Given a set of points F' =
{x1.X2,.. X}, X; € R¥, the data depth measure of an additional point x is a real-valued function d(x|F). Many such functions
exist; Tukey’s data depth is:
Dr(x, F) = ”mi'm card{u’'x; < u'x}
ul|=1
In the CS-bootstrapping method applied to problem (1), we order the B instances E according to Dr(x, F) and trim the o %
outermost (the e % with lowest Dy value). This yields E_-F_{_.l_ , in step 1g.

An example in Evolutionary Biology.- Theory predicts that when a population is subject to stabilizing selection over time
the population mean should evolve to the peak of the fitness surface. Experiments in mice and insects vary the components of
diets (carbs and P) and measure responses that are surrogates of fitness (e.g. no. of eggs placed by a female insect). Of practical

importance for humans are lifetime experiments with diets. These are mixture-amount experiments.
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Figure 2. Diet lifetime experiments in Gryllodes sigillatus (decorated cricket). A thin plate spline is fit to the lifetime response in females (left) and males (3rd
figure) as diets changed proportions and amounts of P and C. Second and fourth plots: corresponding CR's on the location of the optimal diets. The CR of the
maximums overlap, providing evidence the optimal dietz for female and males are equal. MNote the high C to P ratio inside the CR’s, away from the origin, so

calorie restriction does not increase lifetime. Experiments conducted by Prof. John Hunt's group, Biosciences dept., U. of Exeter, UK).

SOME SELECTED JOURNAL PAPERS FROM THIS WORK

1. Hunt, J., Rapkin, J.,

Diel Castillo, E., Hunt, J., and Rapkin, J., “OptimCR: an R package for finding confidence regions of response surface optima”, to be submitted to J. of
Statistical Software (201G).

Del Castillo, E., Colosimo, B., and Tajbakhsh, 5. “Geodesic Gaussian Processes for the Reconstruction of a 3D Free-Form Surface”, Technometrics (2015).

and Del Castillo, K., “Evolution of dietary sex differences in Gryllodes sigillatus”, to be submitted to Evolution (2016).

| )

£ 40

Del Castillo, E., and Colosimo, B.M., “Statistical Shape Analysis of Experiments for Manufacturing Processes”, Technometrics, (2011).

=

B. Bettonvil, E. del Castillo, and J.P.C. Kleijnen. “Statistical testing of optimality conditions in multiresponse simulation-based optimization,” European
J. of Operational Research, (2009)

6. Cahya, 5., Del Castillo, E., and Peterson, J.J., “Computation of Confidence Regions for Optimal Factor Levels in Constrained Response Surface Problems,”
J. of Computational and Graphical Statistics, (2004).

7. Peterson, J., Cahva, 5., and Del Castillo, E., “A General Approach to Confidence Regions for Optimal Factor Levels of Response Surfaces”, Biometrics,
(2002).

ACKNOWLEDGEMENTS

National Science Foundation grants DMI 9623669, DMI 9988563, CMMI 00585041, CMMI 0825786 and CMMI 1537987,
Ministero dell’lstruzione, dell'Universita e della Ricerca (Italy) grant FIRE RBIPOG9S2T 0035,
Prof. Bianca Colosimo, Dept. of Production Engineering, Politecnico di Milano, ltaly.

by

Dir. John Peterson, Director of Statistics, GlaxoSmithKline.
Prof. John Hunt, Evolutionary Genetics Dept., U, of Exeter, UK,

[ | B S L



	engineering-statistics-machine-learning-lab-1
	engineering-statistics-machine-learning-lab-2

