Using Physiological and Psychophysical Measurements to Assess Backpack Loads for Middle School Students

Denise H. Bauer and Andris Freivalds
The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering
The Pennsylvania State University

Introduction
- Over 40 million US students use backpacks (Watts, 2002)
- Average weight carried is comparable to NIOSH lifting limit for adults (Nagin, Castelain, & Sibbitt, 1999; Watts, Het-Anderon, & Greg, 1999)
- Increasing number of children reporting back pain (Rambhadre, Martinis, Botto, & Else, 2007)
- Debate over the case of heavy backpacks
- Debate over appropriate load limit
- Study age group in an important physical growth period (Growth and development, ages 11 to 14 years, 2006)

Significance
- Wide range in the recommended load limit can be confusing to parents and students
- American Occupational Therapy Association (AOTA): 15% body mass (BM)
- American Academy of Pediatrics (AAP): 10 to 20% BM
- Finding an appropriate load limit is important to reduce injuries to the back, neck, and shoulders as well as posture problems (Eke, 2004)
- Universal load limit would help students, parents, and teachers understand the importance of restricting the load of a backpack to ensure the present and future safety of students

Research Questions
- Is there a significant change in the electromyography (EMG), heart rate, ratings of perceived exertion (RPE), ratings of perception of pain (CR10), and trunk forward lean?
- If there is a significant change in the measurements, at what load does the change occur?

Methodology
- 20 subjects (11 to 14 years old): 10 males, 10 females
- Two backpacks
- Two trials: standing and walking on a treadmill
- Carried loads of 0, 10, 15, and 20% BM
- Each load carried twice for both trials
- Measured EMG, heart rate, ratings of perceived exertion, ratings of perceived pain, and trunk forward lean

Results
- No significant findings from EMG, heart rate, or RPE measurements
- Significant difference between 10 and 15% BM for perception of pain (CR10) for all areas in both trials except middle back, standing (Figures 3 and 4)
- Significant difference between 10 and 15% BM for trunk forward lean in the walking trial (Figures 5 and 6)
- Trunk forward lean at 15 and 20% BM for both trials is higher than that found during normal gait (Osnes, Anderson, & Fernberg, 1989)

Conclusions and Recommendations
- Results indicate that the load limit for middle school students is 10% BM
- Students should follow AOTA guidelines for loading their backpack
- Schools should have backpack awareness programs or participate in Backpack Awareness Day and Month
- Students should try a loaded backpack on before buying
- Parents and students should weigh the backpack regularly
- Extra items that are not needed for that day should be removed

Future Research
- Use the same backpack load for each student
- Use the body mass index (BMI) to group subjects
- Include more dynamic activities to simulate normal carrying situations
- Increase the individual trial times

Figure 1: Standing trial
Figure 2: Walking trial
Figure 3: Average perception of pain ratings for each body area and load - standing trial
Figure 4: Average perception of pain ratings for each body area and load - walking trial
Figure 5: Trunk forward lean - standing trial
Figure 6: Trunk forward lean - walking trial